Parallel solvers for virtual element discretizations of elliptic equations in mixed form

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast parallel solvers for symmetric boundary element domain decomposition equations

C. Carstensen1, M. Kuhn2, U. Langer3 1 Mathematical Seminar, Christian-Albrechts-University Kiel, Ludewig-Meyn-Str. 4, D-24098 Kiel, Germany; e-mail: [email protected] 2 Institute of Mathematics, Johannes Kepler University Linz, Altenberger Str. 69, A-4040 Linz, Austria; e-mail: [email protected] 3 Institute of Mathematics, Johannes Kepler University Linz, Altenberger Str. 69, A-404...

متن کامل

Schwarz Type Solvers for hp-FEM Discretizations of Mixed Problems

The Stokes problem and linear elasticity problems can be viewed as a mixed variational formulation. These formulations are discretized by means of the hp-version of the finite element method. The system of linear algebraic equations is solved by the preconditioned Bramble-Pasciak conjugate gradient method. The development an efficient preconditioner requires three ingredients, a preconditioner ...

متن کامل

A posteriori error estimates for nonlinear problems. Lr-estimates for finite element discretizations of elliptic equations

— We extend the gênerai framework of [18] for deriving a posteriori error estimâtes for approximate solutions of noniinear elliptic problems such ihat it also yields L'-error estimâtes. The gênerai results are applied to finite element discretizations of scalar quasilinear elliptic pdes of 2nd order and the stationary incompressible Navier-Stokes équations. They immediately yield a posteriori e...

متن کامل

Boundary preconditioners for mixed finite-element discretizations of fourth-order elliptic problems

Abstract We extend the preconditioning approach of Glowinski and Pironneau, and of Peisker to the case of mixed finite element general fourth-order elliptic problems. We show that H−1/2-preconditioning on the boundary leads to mesh-independent performance of iterative solvers of Krylov subspace type. In particular, we show that the field of values of the boundary Schur complement preconditioned...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computers & Mathematics with Applications

سال: 2020

ISSN: 0898-1221

DOI: 10.1016/j.camwa.2019.07.027